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The quasistatic development of a system of cracks is investigated by writing the fracture criteria as variational inequalities, which
enable the extension of the crack to be followed as a function of the time-like loading parameter. The interaction of cracks and
their stability or avalanche-like growth are analysed. The similarity and differences between Irwin’s and Griffith’s criteria both
in the usual and the refined formulations are discussed. © 2000 Elsevier Science Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEM

Consnder a two-dimensional homogeneous body ) weakened by a family of rectilinear cracks
Mi(j = , 7). The numbers P, ..., PV will be given to the crack tips positioned within Q (for a
boundary crack only a smgle tip is marked ie. N < 2J). At each point P", its own system of
polar coordinates (r,, ¢, is introduced, and here r, = |x — P*| and ¢, = *m are the equations of
the sides M. of a crack with a tip P". The stress intensity factors (SIFs) at P" caused by a load p°
on the external surface I' of the body  will be denoted by K;° and K3° (for simplicity, we disregard
the mass forces). We will introduce the time-like loading parameter 7 € [0, 7¢) and represent the load
in the form

Pt —p +‘tp +‘tzp”+ (1.1

The corresponding SIFs in the body Q(0) = O\{M' U ... U M’} with the initial damage configuration
likewise become the sums

K =K+ K" + 0K +..., n=1.. N, i=12 (12)

If, during loading, at least one crack is a non-equilibrium crack, a family of cracks M, ..., M} will
begin to develop. The aim of the present paper is to give, on the basis of various fracture criteria,
formulations of problems that will enable the configuration of the family {Mi(r):j=1,...,J} tobe
predicted at instant of time 7 > 0. Here it is assumed that cracks grow rectlhnearly and cannot
merge. The latter condition is ensured by the smallness of the parameter r, and the former
condition is discussed in Sections 3 and 7. The smallness of T also enables us to replace Taylor series
with quadratic approximations, i.e. to remove the “+ ...” from (1.1) and (1.2). The SIFs K}(7)
corresponding to the load p(7) = p” and the displaced tip F‘(T) can, of course, differ from K/". The
extension of the crack M’ towards its tip P" will be denoted by h,(t) = |P" — P"(t)|. We will assume
that all cracks are open (no contact of the sides) and cannot close (the fracture process is irreversible);
in other words,

K'(1)>0, h(1)=0, te[0,7p), n=1L....N (1.3)

The usual formulations K7° = K;. and AU + 2y(h; + ... + hy) < 0 of Irwin’s and Griffith’s criteria
give the value of the critical load initiating the crack. Well-known approaches to the refinement of the
formulations of the criteria (see [1, 2] for the force approach and [3, 4] for the energy approach) require
reference to problems with unilateral constraints.

In Sections 3 and 4, the variational inequalities obtained by a posteriori analysis are reproduced (in
other words, the condmons of equilibrium correlate with the intermediate and final posmons of the
cracks). Such inequalities enable us to describe the quasistatic development of the family {M", ..., M},
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i.e. to find the functions Ay, ..., Ay from (1.3) and to determine the conditions for the emergence of
bifurcations or the transition to dynamic fracture. The basis for deriving variational inequalities is
provided by various asymptotic formulae for the stress state of the body when the variation in crack
lengths is arbitrary but small (Section 2). In both cases, data of the problems are expressed in terms of
the same characteristics of the body at the instant of time 7 = 0, which makes it possible in Section 5
to compare the results obtained.on the above assumptions on the basis of variational asymptotic models
of various criteria. These models are not always equivalent, and here, under certain conditions, the model
of Irwin’s criterion predicts greater crack advance than the model of Griffith’s criterion (Assumptions
2 and 3). Examples and generalizations are discussed in the final Sections 6-8.

2. ASYMPTOTIC FORMULAE

The displacement field in the body (0) under the load (1.1) will be denoted by u"(x). Close to the
apex P", the expansion

0= A+ KR @ + kY @M+ 00 @1

holds.

Throughout this paper, summation with respect to i and / is carried out from 1 to 2, and with
respect to m and n from 1 to N. In (2.1), A" is a linear vector function of the variables x, ®™ are the
known angular parts (see, for example, Section 1 in [5]), and k;"" are the “lower” SIFs (they are not
related to stress singularities but have an influence on crack advance). Furthermore, like relation (1.2),
we have

W () =10+ T () + T (x), kS = k0 Tk TR 2.2)

We introduce the weighting functions {™ with singularities at the point P" (see [6, 7], and also Section
1in [5]), i.e. the non-energy solutions of the homogeneous problem in the region ((0)

00 =B,y (04 T AL RN QM)+ M+ O, 23)

where ¢™™ are constant vectors, WY are the angular parts of the singular displacement fields (these are
written out, for example, in Section 1 of [5]) A are factors similar to SIFs that are geometrical
characteristics of the damaged body, and 3,,,, is the Kronecker delta. The weighting functions {* were
introduced in [6, 7] to compute the SIFs

K!'™ = [ pT(x)-§" (x)ds, 2.4)

Here and below; integration is carried over the surface I' of the body ).
Formula (2.4) is proved using integration by parts in the region {(0) with a cutout small circle
{x: r, < 0} and then taking the limit as 8 — +0. The same manipulations with * and {™ lead to the

equations
AII = AII

nm mn

(2.5)

We emphasize that all the quantities introduced relate to the initial position of the cracks and can
therefore be used as data for the problem of the development of a family.

A slight modification of the procedure from [8] (see also Section 3 in [5] and Section 7.2 in [9]) enables
us to construct the asymptotlc forms of the solution u(r; x) of the problem of the deformation of the
body Q(7) = Q\{M() U ... U M/(1)} by the load p() (unlike u"(x), this is the real displacement field,
taking account of crack growth). The “far” field, which serves as an approximation of u(r; x) outside
the neighbourhood of the crack tips, is expressed in terms of the outer expansion

u(tix) ~ u®(x)+ T’ (x) + oYy h, ()Y K;’OC"i(X) (2.6)

In other words, the method of matched asymptotic expansions is used (see [10, 11]. etc.). Besides
the correction tu’(x) from (2.2), the right-hand side of (2.6) contains a linear combination of weighting
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functions which appears on account of crack elongation. The factor a equalizes the singular part
r~V2¥l(e) with the kernel component r’®'i(¢) differentiated along the crack [12, 13] and in the
isotropic case is computed from the Lamé constants A and p. of the elastic material

o= (A + 2020 + p)J! 27

Since the explicit form of the angular parts @ ... and ¥ ... is not used in the present paper, according
to well-known results [13], in some cases the examination of orthotropic bodies requires only a change
in the factor (2.7).

The accuracy of approximation (2.6) is determined by the squares of the quantities v and
h(t) = max{h(7), ..., An(t)} (the maximum elongation). Due to singularities O(r; %) close to the
tip P”, the outer expansion (2.6) is replaced by an inner expansion written using the fast variables
£ = h,(7)"'[x — P*(7)] and reflecting boundary layer effects. The explicity form of this expansion was
presented earlier ([8] and Sections 3 and 5 in [5]). All of the asymptotic terms from (2.1) and (2.3)
occur in this, but the smooth components A™(x) and ¢"™ have no effect either on the far field (2.6) or
on the following asymptotics form of the SIF

K'"©) = K" + 1K +h, (DK 12+ 0y A b, (DKM +0(T* + h(1)?) (2.8)
m,d
The corrections of h,,('r)k,-"O/Z and 'rKd'-' "are governed by the displacement of the tip P" and by the linear
change in the external action p” ~ p~ + 7p’, and the sum with respect to m and / describes the mutual
influence of the growing cracks.

We will now examine the potential energy of deformation U(t) = E(r) — R(r), where E(1) is the
elastic energy stored by the body Q(7) and R(7) is the work of external forces p(t). Using relations (1.1),
(2.6) and (2.4), we arrive at the well-known Griffith’s formula, which is supplemented with the term
7U’ produced by load variation

U(t)= —-21-R(‘C) = ——;—jp(‘c;x)ou(nx)dsx =

=%+l - % T k(DK™ [ p° -Lhids, + O(T + h(T)?) =
n.Jg

=U° U’ - % 3 A, (K0 +0(T2 + h(T)?) 2.9)

ni

l 1 0 ’ 1 ’ ’,
U°=—5R°=——2—fp -uds,, U =———2—j(p°-u +p’-u®)ds,

The refined formula (2.9) will be needed later, it can be derived and substantiated by constructing
the successive terms of the inner and outer expansions for u(r; x)[5]. However, the same result can be
achieved in a simzpler way: relations (2.9) and (2.8) enable us to compute, with reliable accuracy, the
derivative 9°U/a+*. Thus

U =U"+tU’ +12U” -

- % s h,,(‘r)K,-"“{K,’"’ +21K" + % h (T +

n.i

+o Y AR, (T )K,’"O} +0(T* + h(1)*) (2.10)

m.!
|
(/” — _EI(/)() B ull + 2[)' ) “1 + pn i uo)dsx

We emphasize that the expression from the braces differs from the right-hand side. of (2.8) by a factor
of 2 for the quantity 7K} .
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3. A VARIATIONAL INEQUALITY BASED ON IRWIN’S CRITERION

Irwin’s criterion implies thatf close to the tips P!, ... , PY, a mode-1 stress state (normal fracture)
predominates, i.e. the SIFs K, ..., Kb vanish or are negllglble which is consistent with the assumption

on the preservation of rectilinearlty Such a state can be realized for cracks lying on the same line, or
for several similar ranks remote from each other.

We will introduce convenient notation. We will take the column H = (Hy, ..., Hy)' as an unknown
quantity, with the components [see (1.3)]

H,(t)=h, (DK’ =0 (3.1

From the coefficients AL, [see (2.3)] we f form the NXN matrix 4, it is symmetrical by virtue of (2.5).
The scalar product in Euclidean space R will be denoted by (,). In accordance with formula (3.1), the
column H belongs to the quadrant (R.)" (the plus subscript indicates non-negativity of the components).

According to the force criterion of fracture, the crack is at rest if Ki does not exceed the critical SIF
value K. This condition will be written in expanded form, tracking at each instant of time 7 both
stationary and moving tips

h(=0=K'(t)s K|, 32)
h(D)>0= K'(1)=K,, 3.3)

The final row can be explained as follows: the inequality K7(7) < K;, denoting the crack arrest up to
instant of time 7, is excluded from (3.3) because, owing to the smallness of 7, the quasistatic process of
fracture is naturally considered to be continuous. Essentially the same implications were used previously
[1, 2, 14].

Acting in accordance with the normal scheme (see, for example, [15]), we will transform formulae
(3.2) and (3.3) into an inequality that holds for any X, = 0

KN -K)H(T)-X,)=0 (3.4)

This is actually a concise form of relations (3.2) and (3.3), since the latter follow from (3,4) if it is assumed
that X,, = H,(t) * H,(7) when H,(7) > 0 and that X, > 0 when H,(7) =0

We replace K7(r) with the asymptotic representation from (2.8), sum inequalities (3.4) over
n =1,..., N, and, after rearranging the terms, we obtain

Q{AH(T), H(T) - X) +(BH(1), H(t)- X) = (F!(1). H(T) - X). VX e(R,)" 3.5)

B =diag|{B,.....By}. F'(¥)=(F'(t)..... Fi(v)) 36)
B, =K k°, F(0= Ky, - K[~ 1K}’ '

The algebraic variational inequality (3.5)(which we will term the inequality corresponding to Problem
I) should be interpreted as a model of the force criterion of fracture that takes account of the load
mcrement and interaction of the cracks. All the data of Problem I are determined from the linear part
p° + 1p of the forces p” and the initial position of the cracks M, ..., M. Using Eq. (3.1) for the solution
H(r), the crack extensions A;(7), ..., Ay(7) are reproduced as a , function of the loading parameter 7.
The interaction of the cracks is described by matrix A. The characteristics of the initial stress state close
to the crack tips occur in the diagonal N X N matrix B, and the right-hand side of F' takes up the entire
dependence on the loading process, i.e. on p’.

4. A VARIATIONAL INEQUALITY BASED ON GRIFFITH’S CRITERION

According to Griffith’s criterion, a family of cracks develops such that, at any instant of time 7, the
minimum total energy U(t) + II() is attained. Denoting the surface energy density by vy, we find the
corresponding increment

ATHT) =2y (D) + ... + hp(T) 4.1)
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We will adopt the same conditions for normal fracture as in Section 3. We will replace the increment
of potential energy AU(7) in the minimization problem with its asymptotic representation from (2.10).
Calculating the variation in the functional obtained for the arguments H(7), ..., Hy(7), we arrive at a
variational inequality (which we will term the inequality corresponding to Problem G) that differs from
(3.5) solely in the replacement of F’ (t) by

Fémy=(FC),.... FE (0 4.2)
where
G 2 Y ] 0 n I KZ( n0 w
F, (T)=7;,b‘a—5’<1 - 1K) _E[FLO—K' }”TKI (4.3)

Equation (4.4) expresses the usual relationship between the strength characteristics K, and v.

Note that the quantities p” and u” form (1.1) and (2.2) occurred in Eq. (2.10) but disappeared when
the variation in the functional was computed, i.e. the model corresponding to Problem G acquired the
same accuracy as model (3.5), and the loading (1.1) could be considered to be linear. Everything that
was stated at the end of Section 3 applies equally to Problem G. Thus, the reduced formulation of the
energy criterion of fracture enables us to find the distribution of the crack extensions as a function of
the loading parameter T and the number » of the tip. This fact, together with the results of [4, 14] on
the variation in the front of the crack in three-dimensional bodies, disproves the view held by
Si and Libowitz [16] concerning the inadequacy of Griffith’s criterion and the impossibility of its strict
formulation. The conclusions drawn in {16] were based on an analysis of the energy release rate which
arises naturally but by no means replaces the entire criterion.

5. COMPARISON OF THE SOLUTIONS OF THE PROBLEMS

A standard treatment of the results of the investigation of the variational inequalities in Problems /
and G leads to the following conclusions.

1. If the problem has only a trivial solution H(t) = 0, the system of cracks is stationary.

2. If a small (when T — +0) solution exists and is unique, then the family of cracks develops
quasistatically and is stable.

3. Bifurcations may be observed when there are several small solutions.

4. The absence of a solution or failure to comply with the requirement H(t) = o(1) as r — +0, even
by one of the solutions, results in an avalanche-like growth of cracks and requires that dynamic effects
be taken into account.

We will establish the sufficient condition for the existence or uniqueness of the solution of Problem
I or Problem G. In view of the similarity of the notation of these two problems, we will refer below
only ;g the variational inequality (3.5), and we will not indicate indices I and G for the columns F'(r)
and F7(7).

Proposition 1. If the matrix a4 + B is negative definite, a unique solution H(7) of problem (3.5) exists,
and the following limit holds

AH (D + (F(1),, H(T)) < (F(1)., H(1)) < IF(T).l - IH(T)l (5.1)

¢ 0, F(t), =(F (Ve Fy(D).), Fy(T)s =%(|Fn(r)lip,,(x))>0

A proof of the solvability of a problem like (3.5) with the condition formulated can be found in any
textbook on convex analysis (for example, in [15]). The necessary limit is obtained if it is assumed that
X = 0 and noted that F(t), — F(7),. In fact, we have

H(t)Ps {(~(0A+ BYH(1). H(T)) = —(F(1), H(D)) = (F(T)_, H(D)) - {F(1),. H(T))

It must also be mentioned that the components of the columns H(t) and F(r). are non-negative.
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Suppose the condition a4 + B < 0 is satisfied. If F,(t) = 0, then H(=) = 0 and Situation 1 occurs.
It is therefore reasonable to take as the starting point the instant of time T = 0, for which at least one
of the SIFs K7 is identical with K, [according to definitions (3.6) and (4.4), this critical criterion is the
same for both criteria]. Then F,(7)- < (K7 ), and by virtue of (5.1)

HD < c (KD, +. o+ (K,

Thus, the cracks grow steadily and quasistatically but remain stationary if all K} are negative (a change
in the load causes a reduction in the SIF).

We will now consider the effect due to the interaction of cracks; not only are non-equilibrium
(K = Ky, KI' > 0) cracks begin to grow but, as the parameter t increases, those cracks for which
the SIF is near-critical are also involved in fracture. In this case, in accordance with estimate (5.1),
the equation H,(7) = 0 (immobility of the tip P") can be guaranteed only if F,,(7); > |F(7)-], i.e. when
the SIF K{'O is much less than the critical value.

Since it is always the case that K° < K, from formulae (3.6) and (4.4) we infer that

Févy=Fl(v), n=1,...,N

These inequalities enable us to compare the solutions H°(r) and H'(t) of Problem G and
Problem /.

Proposition 2. Let a4 + B < 0 and let the off-diagonal elements of the matrix A be non-negative.
Then the solutions of Problem I and Problem G are related by

Hi(t) = H4(T) 5.2)

Proof. We will assume that X = H' + HY, corresponding to Problem I in inequality (3.5), and that X = H® — H
in the similar inequality for Problem G; here H = H® + H' (argument t is not written). Combining these inequalities,
we obtain

(AH HOY+(BHY HYy = (FC - F! 1Oy
Since B is a diagonal matrix, we have
(BH.H])=(BH].HY)
Furthermore
(AH® H))=(AH).HD)—(AHO HY)
the subtrahend being positive owing to the property of the off-diagonal elements in 4. Thus
0=—ctH = ((cA+BH? HY) - (AH® . H?Y = (FO - F' H%) =0
From this it follows that HY = (H® + H'), = 0, which means that the required inequality (5.2) is established.

Under the conditions of Proposition 2, the model of Irwin’s criterion (Problems /) predicts greater
crack advance than the model of Griffith’s criterion (Problem G), and here the following obvious limit
holds

| H' () - HO(t)P< Cmax{(K,, - KO)*(K°) ' (H!(t)- HE (1))}

Consequently, the discrepancy between H'(t) and H%(v) increases when predicting the start of cracks
with considerable deviations of SIFs K°, from the critical value. Both criteria lead to the same result
if initially non- equilibrium cracks prove to be the only ones growing (primarily) this concerns isolated
cracks, see Section 5 in [5]).

Proposition 3. We will assume that a4 + B < 0 and Hi(7) = HS7) = 0 when K}° < K,,. Then
Hi(r) = H5(2).
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Proof. We will combine inequality (3.5) corresponding to Problem I, where X = HC, and the similar inequality
for Problem G, in which we will assume that X = H'. We have

clH® P<~((0A+BH, HOY < 3 (F! - EC)HE - H])

All of the terms of the latter sum are zero since, by virtue of (3.5) and (4.2), F. = FS when K = K;, and, according
to the proposition, HC = H. = 0 when K° < K. Thus, H’ = H® — H' = 0.

As indicated by Proposition 2, the equivalence of the variational-asymptotic models of Irwin’s and
Griffith’s criteria established in Proposition 3 is not always satisfied, although Eq. (4.4) fixes the same
equilibrium threshold of cracks. Crack growth under conditions of interaction can lead to divergence
of the solutions H'(t) and H(r) within the limits of accuracy of the models (when deriving variational
inequalities from asymptotic formulae, the lower terms were removed). Since the bifurcations are very
sensitive to perturbations of the data of the problem, in Situation 3 qualitatively differing patterns of
crack development may be obtained.

The next assertion relates to the case of avalanche-like crack growth, i.e. to Situation 4.

Proposition 4. If the matrix a4 + B is positive definite and all the components of the right-hand side
of F(7) are negative, variational inequality (3.5) has no solutions.

Proof. 1t is sufficient to note that, for both criteria, variational inequality (3.5) is equivalent to the problem of
the stationary points of the functional

(ROVD His - (@A + B). HY+ 2(F, H)

It is obvious that, under the conditions indicated, there are no such points.

6. EXAMPLES

The effects discussed in the previous section can even be traced in the sim}i)lest problem of a single
internal crack (i.e./ = 1 and N = 2 and P! and P? are the tips of the cut M"). If the distance d from
the centre O of the crack M to the external contour I' is much greater than its length a = |P' — P?|,
it is possible approximately to compute the 2 X 2 matrix 4, replacing Q with the entire plane R? and
using a representation by the weighting function in terms of the Kolosov—Muskhelishvili potential (see

Section 11.3 in [17])
2 -1 2
A=——lAa+0 %], A= (6.1)
4ax d: 2 -l

An estimate of the remainder in (6.1) is obtained using general results concerning problems in regions
with a singularly perturbed boundary (see {11, 18] and also [5, 19, 20] for elasticity theory). Note that
the matrix 4 is not sign definite — its eigenvalues are equal to 1 and —3. We assume that the region
Q(0) = Q\M' is symmetrical about the Cartesian axes Ox; and Ox,. The symmetry of the load in relation
to the axis of the crack Ox; ensures the absence of a shear mode in the stress state close to the tips P!
and P2, Furthermore, for the matrix 4 from (6.1), the relations.

A=An<0, A;=A;>0 (6.2)

are retained. Therefore, in subsequent calculations, we will- eliminate the small quantity O([a/d]?) from
(6.1) - this will not qualitatively change the pattern of crack growth but only give small perturbations
to the threshold values of the parameters.

Initially, let the load p” also be symmetrical about the Ox, axis so that K1(t) = K3(r). Since, for lower
SIFs k{°, integral representations similar to (2.4) hold (see [7] and also {5, 9]), by selecting suitable forces
p® and p’ it is possible to ensure any SIF values, in particular

K||O=K|20=KI(" k,’0=k|20, K|I,=K|,>0 (6.3)

Problem I or Problem G satisfies the conditions of Proposition 1 only if 2ak!® < —K2 when the crack
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develops symmetrically and quasistatically, and the unique solution acquires the form
H,(t)= Hy(1) = 4otk (-K|® = 2ak)®)"' k/° (6.4)

In (6.4) the factor of Ki® (positive) coincides with the extension of the crack at each of the tips.
When 2aki° = —Ki there are no solutions of (3.5) (dynamic growth). In fact, we note first that
H(r) = 0 cannot be a solution. If there is a non-trivial solution, then inequality (3.5), in which
X; = H(v) + 1, leads to the contradiction

—2ak "y (K + 20k W H (D + Hy(v) = K[ >0

In particular, 2aki’ > —K" in the case of a homogeneous stress field, and it is for this reason that
energy balance durlng the quasistatic drsplacement of cracks is impossible (apropos of an 1nhomogeneous
field, see [21]). It is obvious that, when K] < 0, the solutions of Problems I and G are trivial, i.e. the
crack stops.

By Proposition 3. Irwin’s and Griffith’s criteria lead to identical results in the case of (6.3). We will
now examine a loading p* such that the component p’ possesses no symmetry about the axis
Ox, and for smalls > 0

KV =kPU+5)=K,.. kK°=&20+s5). K =k¥ (6.5)
For the condition 2ak}® < —KI° of the unique solvability of Problem I and Problem G, we have

F(=-1K", FK=8-1K{" (8=8, or 8=38;)

8, =— 5(,:(|+‘—")‘—"K,,_
I+ 2)1+s
H(t)=tch™', Hy(t)=0 when t<T (6.6)
Tc 8ad Tc 4adb
H(t)y=——-——, Hy(T)=——- when t=7T
W=y o MO ST
b=1-2ak'%(K!®Y"' >2, c=4ak) T=8—b(K")“'
| ] ’ [ b+2 1

Thus, in both criteria, only the tip P! (at which K]’ = K;.) advances up to a certain instant of time,
and the crack then grows in both directions. The rate of displacement of the tips are 1dentlcal only
because, according to assumption (6.5), KIYKI® = K%K In addition, the start of the apex P* within
the framework of the model of Griffith’s criterion is later than for the model of Irwin’s criterion, since
in (6.6)

§ b
1+5s2+5b

1= Ki (K™ TG=(I+£)TI
2

However, an error of the order of s* in determining T is beyond the scope of the accuracy of the
model used. since, when comparing Problems I and G, the quantities O(1%) and O[h(r)*] were discarded.
An increase in the parameters s > 0 and b > 2 delays the instant of connection of the tip P? to the
fracture process. The functrons indicated in (6.6) are continuous with resgect to the parameter 1. Finally,
in Irwin’s criterion the tip P? begins to move until the hypothetrcal SIF K1 from (1 2) reaches the critical
value K. The same is true for Griffith’s criterion, since the number s in (6.5) is small.

In the previous examples, an alternative was observed: problem (3.5) is either unsolvable or has a
unique solution. As can be seen from what follows, bifurcations can arise if the elements 4, = A, of
the matrix from (6.1) are negative. Using the Papkovich-Neuber concept and the maximum principle,
it is established that the off-diagonal elements of the matrix 4 are positive if the family of cracks is
positioned on the line L but remote from the external surface 3{}(the conditions of Proposition 2 are
thereby ensured). The same holds true for a family containing one or two long boundary cracks on L,
Thus, bifurcations are revealed perhaps only because of the interaction of cracks with the remaining
part of the boundary of the body. Numerical calculations of SIFs in similar situations can be found in
[22] and elsewhere.
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Bifurcation effects were investigated in detail in [1, 23], but here we will confine ourselves to the
simplest example: we will adopt conditions (6.3) and replace the matrix (6.1) by

|
daot

1 =2
-2

As earlier, it can be verified that when 22k}’ = — K" there are no solutions for problem (3.5). When
2ak!® < —3K, Proposition 1 guarantees the uniqueness of the solution

H,(1) = Hy (D) = 4atK)’ (K" ~2ak{®y" k]° (6.7)

The same symmetrical solution (6.7) is retained when 2aki® < K% but when 24k1° e [—3K°, -K%a
further two soluticns arise, which are asymmetrical

H (1) = 4atK) (-K® =2ak/®Y'K|®, Hi ((0)=0, i=12

According to well-known results [1, 23], the symmetrical solution (6.7) is unstable.

7. GENERALIZATIONS - GRIFFITH’S CRITERION

We will drop the assumption that the SIF K2° is small. Besides the column HV(7) with components
(3.1), we will introduce the column H?(r) = [ng)('r), ..., HP(7)]' with the components

HP (1) =k, (DK5° (7.1)

There is no need to introduce any constraints on the components (7.1) corresponding to the shear
mode. Now the problem of minimizing the functional AU(7) + AII(t) reduces to a variational inequality
of the form

az <A(i.I)H(i)(.c)‘ H(/)(T)— X“))+(B“)H“)(T), H“)(T)— X(I)) =
il

= <I;(l)(,t), H(l)(t)_ X(|)>+(F(2)(T)‘ H(Z)(T)_X(z)) (72)
VX{I) E(R+)N, X(Z) c RN

where 4% are N x N matrices with elements 4%, from (2.3). and the components of the N columns
FY(z) and FP(7) and the elements of the diagonal matrix B have the form

I‘;,”)('C) - (K]"O )—l {Klz( _ (K;O)z} _ K;x() _ TKlm, F"Q)(T) = —TK;’
B'('H - (2KINO)—I {kln() + k;OK?"'O(K:’O)_I}

For the problem in question it is possible to prove an assertion similar to Proposition 1. However,
the interpretation of the solution HV(r), H?(1) is not as obvious as in the case of Problem G. Of course,
in accordance with (3.1), the extensions A;(t), ..., hn(r) are re-established for the first column H(x).
In addition , the values of £,(t) found may contradict formula (7.1), since all of the quantities occurring
in it have already been computed. In all likelihood, the discrepancy is due to the assumption of rectilinear
crack growth — the presence of a shear component should cause distortion of the trajectories, but the
question of the possibility of determining their shape from the solution HY(1), HP(r) remains open
(see the related papers [24-27]. However, a switch to examining curved cracks may alter the essential
nature of the variational inequality by the addition of new unknown quantities.

8. GENERALIZATIONS - IRWIN’S CRITERION

The two-term asymptotic form (2.8) was used to construct variational inequality (3.5). The formulation
of the fracture criterion can be refined on the basis of more complete asymptotic representations of
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the SIFs. For example, under the conditions of Section 3, a three-term asymptotic form is derived (see
[4] and Sections 3 and 5 in [5])

Ki'(t)= K +1K" + K" + —/1 (DK +oF A

m

H, (D)+

K, (H; )+ 0t + (1)) (8.1)
Ku (Hit)= (Xz Anm "'(T){TK’W + 0‘2 Anu/ H(/(T) + In(‘c)k'"o}

+ ,1" (T)( Tk"’ + %h" (T)x;l ) 2 (I‘lll (t) nin + Dltlllh"l (r))HIM (1) (8.2)

nt

Here, the summatlon with respect to g is carried out from 1 to N, {0 is thc coefficient of the singular
component r;2®>!(¢") in an expansion of the form (2.1) of the solutlon u (the formula for ®>!is given
in Section 1 of [5D)- D, are the factors of r2/2&>!(¢™) in the revised expansions (2.3) of the weighting
function ¢!, and in the representation of the non-linear operator (8.2) the replacement of

h,(7) by H,(7) according to formula (3.1) is implicit. Following, the same procedure as in Section 3,
using the asymptotic form (8.1) we can convert relations (3.2) and (3.3) into a problem with unilateral
constraints

{(0A + BYH(), H(T)~ X)+ (K(H; 1), H(t)- X)= (F(1), H®) - X), Vxe(R,)" (8.3)
F(T) = KhA - K| TKIH n”

containing the terms t°K;" and tk{"' from (1.2) and (2.2), which were not called for earlier in (3.5).

The use of complicated asymptotic formulae should enable problem (8.3) to describe the development
of a family of cracks over a greater range of values of the paramenter 7 than problem /. In addition,
the presence in (8.3) of the coefficients %7, D,,,n, and the non-linear operator K = (K, ..., Ky) makes
it difficult both to prepare the data and to solve the problem itself. Therefore, the step-by step solution
of variational inequality (3.5) with a re-calculation of the initial data is very likely to be a more economical
approach that nonetheless ensures the same accuracy.

The revised formulation of Griffith’s criterion, similar to (8.3), requires the construction of successive
terms of asymptotic form (2.10) of the potential energy of deformation. They are extremely cumbersome
and are not written out here. The variational inequalities that arise are investigated by the previous
scheme.
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