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The quasistatic development of a system of cracks is investigated by writing the fracture criteria as variational inequalities, which 
enable the extension of (:he crack to be followed as a function of the time-like loading parameter. The interaction of cracks and 
their stability or avalanche-like growth are analysed. The similarity and differences between Irwin's and Griffith's criteria both 
in the usual and the refined formulations are discussed. © 2000 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Consider a two-dimensional homogeneous body f~ weakened by a family of rectilinear cracks 
MJ(j = 1 . . . . .  3). The numbers p1 . . . . .  pN will be given to the crack tips positioned within ~ (for a 
boundary crack, only a single tip is marked, i.e. N ~ 23). At each point P~, its own system of 
polar coordinates (r n, ~Pn is introduced, and here r n = Ix - Pn I and ~o n = ---~r are the equations of 
the sides M~ of a (:rack with a tip pn. The stress intensity factors (SIFs) at P~ caused by a load p0 
on the external sur.face F of the body l~ will be denoted by K~I ° and K~2 ° (for simplicity, we disregard 
the mass forces). We will introduce the time-like loading parameter -r ~ [0, %) and represent the load 
in the form 

px = p0 +Zp ,+z2p , ,+ . . .  (1.1) 

The corresponding SIFs in the body f~(0) = 12\{M 1 U ' U 344} with the initial damage configuration 
likewise become the sums 

K7 "c = K~ '° +'cK~" + ' t2Kf "  + . . . .  t l  = I . . . . .  N ,  i = 1 , 2  (1.2) 

If, during loading, at least one crack is a non-equilibrium crack, a family of cracks {M 1 . . . .  , M j} will 
begin to develop. The aim of the present paper is to give, on the basis of various fracture criteria, 
formulations of problems that will enable the configuration of the family {M/(a'): j = 1, . . . ,  J} to be 
predicted at instant of time "r > 0. Here it is assumed that cracks grow rectilinearly and cannot 
merge. The latter condition is ensured by the smallness of the parameter r, and the former 
conditioh is discussed in Sections 3 and 7. The smallness of r also enables us to replace Taylor series 
with quadratic approximations, i.e. to remove the "+  . . . "  from (1.1) and (1.2). The SIFs/~/('r) 
corresponding to tile loa.d p('r) = p* and the displaced tip P~('r) can, of course, differ from KT, .*. The 
extension of the crack M j towards its tip P~ will be denoted by hn('r) = IF' - pn(~.) 1. We will assume 
that all cracks are open (no contact of the sides) and cannot close (the fracture process is irreversible); 
in other words, 

K ~ ( x ) > 0 ,  h , , (x )~>0 ,  % ~ [ 0 ,  z0) ,  n = l  . . . . .  N (1.3) 

The usual formulations K~ ° I> K1¢ and AU + 2~/(hl + ... + hs)  <~ 0 of Irwin's and Griffith's criteria 
give the value of the critical load initiating the crack. Well-known approaches to the refinement of the 
formulations of the criteria (see [1, 2] for the force approach and [3, 4] for the energy approach) require 
reference to problems with unilateral constraints. 

In Sections 3 and 4, the variational inequalities obtained by aposteriori analysis are reproduced (in 
other words, the conditions of equilibrium correlate with the intermediate and final positions of the 
cracks). Such inequalities enable us to describe the quasistatic development of the family {M 1 . . . . .  MJ}, 
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i.e. to find the functions hi . . . . .  h/v from (1.3) and to determine the conditions for the emergence of 
bifurcations or the transition to dynamic fracture. The basis for deriving variational inequalities is 
provided by various asymptotic formulae for the stress state of the body when the variation in crack 
lengths is arbitrary but small (Section 2). In both cases, data of the problems are expressed in terms of 
the same characteristics of the body at the instant of time "r = 0, which makes it possible in Section 5 
to compare the results obtained on the above assumptions on the basis of variational asymptotic models 
of various criteria. These models are not always equivalent, and here, under certain conditions, the model 
of Irwin's criterion predicts greater crack advance than the model of Griffith's criterion (Assumptions 
2 and 3). Examples and generalizations are discussed in the final Sections 6-8. 

2. ASYMPTOTIC F O R M U L A E  

The displacement field in the body 12(0) under the load (1.1) will be denoted by u'~(x). Close to the 
apex pn, the expansion 

• , n x  . ~ 2  3 i  n 9 

t 

(2.1) 

holds. 
Throughout this paper, summation with respect to i and l is carried out from 1 to 2, and with 

respect to rn and n from 1 to N. In (2.1), A" is a linear vector function of the variables x, dP mi are the 
known angular parts (see, for example, Section 1 in [5]), and ki ~" are the "lower" SIFs (they are not 
related to stress singularities but have an influence on crack advance). Furthermore, like relation (1.2), 
we have 

u~(x) = u°(x)+ z u ' ( x ) +  ~2u"(x) ,  k] '~ = k7 ° + xk['" + '~2k"" (2.2) 

We introduce the weighting functions ~ni with singularities at the point pn (see [6, 7], and also Section 
1 in [5]), i.e. the non-energy solutions of the homogeneous problem in the region 12(0) 

~ n i .  e, -I / /2. . . l i .  m ,  --it  Y 2 ~ l l -  m.  ¢nmi t.r)=o,,,,,r,,,-'v (q) j+Y. ,a,,,,,r,,,-q~ ~q) )+ +O(t;,) 
/ 

(2.3) 

nmt It where c ' are constant vectors, ~ are the angular parts of the singular displacement fields (these are 
written out, for example, in .Section 1 of [5]), A/,/m are factors similar to SIFs that are geometrical 
characteristics of the damaged body, and 8n,, is the Kronecker delta. The weighting functions ~" were 
introduced in [6, 7] to compute the SIFs 

K; '~ = ~ p ' ( x ) - ; " % r ) a s ,  (2.4) 

Here and below; integration~ is carried over the surface F of the body 12. 
Formula (2.4) is proved using integration by parts in the region 12(0) with a cutout small circle 

{x: r, < 0} and then taking the limit as ~ ~ +0. The same manipulations with gm and ~mt lead to the 
equations 

A i r , _  ,i (2.5) -- mmn 

We emphasize that all the quantities introduced relate to the initial position of the cracks and can 
therefore be used as data for the problem of the development of a family. 

A slight modification of the procedure from [8] (see also Section 3 in [5] and Section 7.2 in [9]) enables 
us to construct the asymptotic fo.rms of the solution u(a'; x) of the problem of the deformation of the 
body 12('0 = 12\{M'(a') tO ... t_J M1(,r)} by the loadp(~) (unlike u'~(x), this is the real displacement field, 
taking account of crack growth). The "far" field, which serves as an approximation of u(r; x) outside 
the neighbourhood of the crack tips, is expressed in terms of the outer expansion 

u(x; x ) ~ u ° (x) + xu'(x) + ~Y. h,, (x)Y. K']°~ "i (x)  (2.6) 

In other words, the method of matched asymptotic expansions is used (see [10, 11]. etc.). Besides 
the correction "ru'(x) from (2.2), the right-hand side of (2.6) contains a linear combination of weighting 
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functions which appears on account of crack elongation. The factor et equalizes the singular part 
r -1 /2~l i (~)  with the kernel component rl/2~li(q 0 differentiated along the crack [12, 13] and in the 
isotropic case is computed from the Lam6 constants h and Ix of the elastic material 

= (;L + 2bt)12g(~L + It)] -I (2.7) 

Since the explicit fi)rm of the angular parts ~ ... and W. . .  is not used in the present paper, according 
to well-known results [13], in some cases the examination of orthotropic bodies requires only a change 
in the factor (2.7). 

The accuracy of approximation (2.6) is determined by the squares of the quantities r and 
h(r) = max{hi(r) . . . . .  hN(r)} (the maximum elongation). Due to singularities O(rn 1/2) close to the 
tip P~, the outer expansion (2.6) is replaced by an inner expansion written using the fast variables 
~" = h,(T)-l[x - P"(r)] and reflecting boundary layer effects. The explicity form of this expansion was 
presented earlier ([8] and Sections 3 and 5 in [5]). All of the asymptotic terms from (2.1) and (2.3) 
occur in this, but the smooth components A*(x) and c nmi have no effect either on the far field (2.6) or 
on the following asymptotics form of the SIF 

K~'(X)= K( '° + x K "  +h, , (x )k~°12+tX~. ,  il ,,,o • A,,,,,h,,, ( ' t ) K /  + O('C 2 + h('g)*-) 
m,I 

(2.8) 

The corrections of hn(r)kin°/2 and "r_/~' are governed by the displacement of the tip P~ and by the linear 
change in the external actionp + - p  + rp', and the sum with respect to m and l describes the mutual 
influence of the growing cracks. 

We will now examine the potential energy of deformation U(r) = E(+) - R(r), where E('r) is the 
elastic energy stored by the body 12(" 0 and R(+) is the work of external forcesp('r). Using relations (1.1), 
(2.6) and (2.4), we arrive at the well-known Griffith's formula, which is supplemented with the term 
rU'  produced by load variation 

.<+> = -½ -½ f e<+;x>.,,<+; x>as+ = 

= v ° + x v ' -  ~ X ,,o o .,.i., 
2 n.i h"('OKi j p  "q as.,: +O('c x +h(x) 2) = 

= U 0 + "tU' - ~ ~ h n ('t)(K7 0)2 + O(,t2 + h(,t)2 ) 
Z n.i 

(2.9) 

I t  0 uOds , U , = _  2 . + p , .uO)dsx  U ° = - / R ° = - ~ J P  " x I (p  0 u" 
2 

The refined forrnula (2.9) will be needed later, it can be derived and substantiated by constructing 
the successive terms of the inner and outer expansions for u(-r; x)[5]. However, the same result can be 
achieved in a simpler way: relations (2.9) and (2.8) enable us to compute, with reliable accuracy, the 
derivative 02U/Or 2. Thus 

U('t) = U ° + z U '  + 'r2U " - 

,,o ,,o 2~K]" + / + _¢x~, h,,(x)Ki {K i + 2h"('c)k~"° 
2 ,,.i 

Illll III0 l +(X~" All h,,,COK t + O ( x  +h(x) :+) (2.10) ! n l . [  

= _ I ~ (pO. , "  + 2 p'. u" + p".  u O)ds.,. U l /  

We emphasize that the expression from the braces differs from the right-hand s ideof  (2.8) by a factor 
of 2 for the quantity "rK~i '. 
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3. A V A R I A T I O N A L  I N E Q U A L I T Y  BASED ON I R W I N ' S  C R I T E R I O N  

Irwin's criterion implies that, close to the tips p1 . . . . .  pN, a mode-1 stress state (normal fracture) 
predominates, i.e. the SIFs K~ . . . . .  K N vanish or are negligible, which is consistent with the assumption 
on the preservation of rectilinearity. Such a state can be realized for cracks lying on the same line, or 
for several similar ranks remote from each other. 

We will introduce convenient notatibn. We will take the column H = (H 1 . . . .  , HN) t as an unknown 
quantity, with the components [see (1.3)] 

H,,(x) = h,,(x)K[ '° >t 0 (3.1) 

From the coefficients Aln I [see (2.3)] we form the NXN matrix A, it is symmetrical by virtue of (2.5). 
The scalar product in Euclidean space R N will be denoted by (,). In accordance with formula (3.1), the 
column H belongs to the quadrant (R+) N (the plus subscript indicates non-negativity of the components). 

According to the force criterion of fracture, the crack is at rest if K{' does not exceed the critical SIF 
value Klc. This condition will be written in expanded form, tracking at each instant of time "r both 
stationary and moving tips 

h, , (x)  = 0 ~ K~'(x)<~ K),. (3 .2 )  

h,,('t) > 0 ~ K~( I )  = K u (3.3) 

The final row can be explained as follows: the inequality K~('r) < K l o  denoting the crack arrest up to 
instant of time x, is excluded from (3.3) because, owing to the smallness of % the quasistatic process of 
fracture is naturally considered to be continuous. Essentially the same implications were used previously 
[1, 2, 14]. 

Acting in accordance with the normal scheme (see, for example, [15]), we will transform formulae 
(3.2) and (3.3) into an inequality that holds for any Xn I> 0 

(K~'(x)- K,,: )( H,,(x) - X,,) >t 0 (3.4) 

This is actually a concise form of relations (3.2) and (3.3), since the latter follow from (3,4) if it is assumed 
that X, = Hn(r )  +- Hn('O when H,('r) > 0 and that Xn > 0 when Hn('r) = O. 

We replace K~'(a-) with the asymptotic representation from (2.8), sum inequalities (3.4) over 
n = 1 . . . . .  N, and, after rearranging the terms, we obtain 

a(AH( ' t ) ,  H(' t)  - X )  + (BHU¢), n(%) - X )  >! (F t  ('¢). n( '¢)  - X).  V X  • (R+)N (3.5) 

B = diag{B, ..... BN}. F l ( t )  = (F , I (x )  . . . . .  Fly(X))  t 

B,, = (2K~'°) -' kt "°, F,,t (x) = K),. - K~ ° - xK;" 
(3.6) 

The algebraic variational inequality (3.5)(which we will term the inequality corresponding to Problem 
/) should be interpreted as a model of the force criterion of fracture that takes account of the load 
increment and interaction of the cracks. All the data of Problem I are determined from the linear part 
p0 + "rp I of the forces pC and the initial position of the cracks M 1 . . . . .  M ~. Using Eq. (3.1) for the solution 
H('r), the crack extensions hl('r) . . . .  , hN('r) are reproduced as a function of the loading parameter "r. 
The interaction of the cracks is described by matrixA. The characteristics of the initial stress state close 
to the crack tips occur in the diagonal N × N matrixB, and the right-hand side ofb  4 takes up the entire 
dependence on the loading process, i.e. onp ' .  

4. A V A R I A T I O N A L  I N E Q U A L I T Y  BASED ON G R I F F I T H ' S  C R I T E R I O N  

According to Griffith's criterion, a family of cracks develops such that, at any instant of time % the 
minimum total energy U(T) + l-I(r) is attained. Denoting the surface energy density by % we find the 
corresponding increment 

AFI('~) = 27(/h(t) + ... + hN('r.)) (4.1) 
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We will adopt the same conditions for normal fracture as in Section 3. We will replace the increment 
of potential energy A U(-r) in the minimization problem with its asymptotic representation from (2.10). 
Calculating the variation in the functional obtained for the arguments Hl('r), . . . ,  HN('r), we arrive at a 
variational inequality (which we will term the inequality corresponding to Problem G) that differs from 
(3.5) solely in the replacement o fF '  ('r) by 

FG(z) = (FIG (~) . . . . .  F G ( z ) )  t (4.2) 

where 

= 2 ], 

KI ~° o~ 
• K; ,0 ]  , I K ~ , o  _ "cK~' = - - "oK I' 

2 2 [ K ;  '0 J 
~K~. = 4], 

(4.3) 

(4.4) 

Equation (4.4) expresses the usual relationship between the strength characteristics Klc and Y. 
Note that the quantitiesp" and u" form (1.1) and (2.2) occurred in Eq. (2.10) but disappeared when 

the variation in the functional was computed, i.e. the model corresponding to Problem G acquired the 
same accuracy as model (3.5), and the loading (1.1) could be considered to be linear. Everything that 
was stated at the end of Section 3 applies equally to Problem G. Thus, the reduced formulation of the 
energy criterion of fracture enables us to find the distribution of the crack extensions as a function of 
the loading parameter r and the number n of the tip. This fact, together with the results of [4, 14] on 
the variation in the front of the crack in three-dimensional bodies, disproves the view held by 
Si and Libowitz [1611 concerning the inadequacy of Griffith's criterion and the impossibility of its strict 
formulation. The conclusions drawn in [16] were based on an analysis of the energy release rate which 
arises naturally but by no means replaces the entire criterion. 

5. C O M P A R I S O N  OF THE S O L U T I O N S  OF THE P R O B L E M S  

A standard treatment of the results of the investigation of the variational inequalities in Problems I 
and G leads to the following conclusions. 

1. If the problem has only a trivial solution H(T) = 0, the system of cracks is stationary. 
2. If a small (when "r --+ +0) solution exists and is unique, then the family of cracks develops 

quasistatically and is stable. 
3. Bifurcations may be observed when there are several small solutions. 
4. The absence of a solution or failure to comply with the requirement H(T) = o(1) as a" ~ +0, even 

by one of the solutions, results in an avalanche-like growth of cracks and requires that dynamic effects 
be taken into account. 

We will establish the sufficient condition for the existence or uniqueness of the solution of Problem 
I or Problem G. In view of the similarity of the notation of these two problems, we will refer below 
only to the variational inequality (3.5), and we will not indicate indices I and G for the columns b4(r) 
and F~('r). 

Proposition 1. If the matrix aA + B is negative definite, a unique solution H('r) of problem (3.5) exists, 
and the following limit holds 

el/q('012 + (F(x)+, H(z)) ~< (F(x)_, H(z)) <-<- IF('~)I. IH(x)I 

c > 0. F(I)+_ = (Fj(z)_+ ..... FN(Z)+)" F,,(.0_+ =/(1Fn(x)  I+F,,(7:) ) 0 
z 

( 5 . 1 )  

A proof of the solvability of a problem like (3.5) with the condition formulated can be found in any 
textbook on convex '.analysis (for example, in [15]). The necessary limit is obtained if it is assumed that 
X = 0 and noted that F(,r)+ - F('r)+. In fact, we have 

H(x) Iz~ < ( -  (txA + B)H(x), H(z)) <<. -(F(z),  H('¢)) = (F(x)_, H(x)} - (F(x)+. H(z)) 

It must also be mentioned that the components of the columns H('r) and F(r)___ are non-negative. 



470 S.A. Nazarov 

Suppose the condition aA + B < 0 is satisfied. IfFn(7 ) I> 0, then H ( ~  > )  = 0 and Situation 1 occurs. 
It is therefore reasonable to take as the starting point the instant of time 7 = 0, for which at least one 
of the SIFs K~ '° is identical with Klc [according to definitions (3.6) and (4.4), this critical criterion is the 
same for both criteria]. Then Fn(7)- <<- 7(K~')+ and by virtue of (5.1) 

I H(x)I<~ c-Jx((K()+ +... +(KIN')+) 

Thus, the cracks grow steadily and quasistatically but remain stationary if all K~" are negative (a change 
in the load causes a reduction in the SIF). 

We will now consider the effect due to the interaction of cracks; not only are non-equilibrium 
(K~ ° =Klc ,  K~' > 0) cracks begin to grow but, as the parameter  7 increases, those cracks for which 
the SIF is near-critical are also involved in fracture. In this case, in accordance with estimate (5.1), 
the equation Hn(7 ) = 0 (immobility of the tip P") can be guaranteed only ifFn(7)+ > IF(7)- I, i.e. when 
the SIF K~ '° is much less than the critical value. 

Since it is always the case that K~ ° <<- Klc, from formulae (3.6) and (4.4) we infer that 

F,,G (1:) >-~ / ' ][ ( I : ) ,  n =  1 . . . .  , N 

These inequalities enable us to compare the solutions HG(7) and /-/4(7) of Problem G and 
Problem I. 

Proposition 2. Let aA + B < 0 and let the off-diagonal elements of the matrixA be non-negative. 
Then the solutions of Problem I and Problem G are related by 

HI(x) >i He;(~) (5.2) 

Proof. We will assume that X = H I + H°+, corresponding to Problem I in inequality (3.5), and that X = ~ -/40+ 
t in the similar inequality for Problem G; here/4 o = H G + H (argument r is not written). Combining these inequalities, 

we obtain 

0 0 0 0 (x(AH .H+ )+(BH .H~.) ~ (F G -FI,HO+ > 

Since B is a diagonal matrix, we have 

(BH °, H°+ ) = (BH °. H °) 

Furthermore 

AH HO\ /at4 0 /4% (AHO_,H O) 

the subtrahend being positive owing to the property of the off-diagonal elements in A. Thus 

0 t> - c  I nO 12/> + ° ,  H+°>- <art_ °. H ° >/> <F c - F ' .  H ° ) t> 0 

From this it follows that/40+ = (/4 G +/_/t)+ = 0, which means that the required inequality (5.2) is established. 

Under the conditions of Proposition 2, the model of Irwin's criterion (Problems/)  predicts greater 
crack advance than the model of Griffith's criterion (Problem G), and here the following obvious limit 
holds 

I H t ( x )  - H G ( ' o  12~ < C m a x { ( K l , .  0 2 0 -J - K,,) (K,,) (HI(x)- H,,G(x))} 

Consequently, the discrepancy between Hi(7) and HG(7) increases when predicting the start of cracks 
with considerable deviations of  SIFs K" n from the critical value. Both criteria lead to the same result 
if initially non- equilibrium cracks prove to be the only ones growing (primarily) this concerns isolated 
cracks, see Section 5 in [5]). 

Propositon 3. We will assume that o.A + B < 0 and H~(7) =/-/~n'r) = 0 when K~ '° <Klc .  Then 
/4 ' (7)  = n " ( 7 ) .  
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Proof. We will combine inequality (3.5) corresponding to Problem I, where X = tt6, and the similar inequality 
for Problem G, in which we will assume that X = H I. We have 

, I #o  12 < -<(aA + m u  °,  H ° )  ~ Z (F,[ - ty)¢#,~ - # . ' )  

All of the terms of the latter sum are zero since, by virtue of (3.5) and (4.2), F~ t = F~ when K~ ° = glc and, according 
to the proposition,/-/~ = H / = 0 when Kf ° < Klc. Thus, H ° = / -~  - H z = 0. 

As indicated by Proposition 2, the equivalence of the variational-asymptotic models of Irwin's and 
Griffith's criteria established in Proposition 3 is not always satisfied, although Eq. (4.4) fixes the same 
equilibrium threshold of cracks. Crack growth under conditions of interaction can lead to divergence 
of  the solutions Hi('r) and Ha(r)  within the limits of accuracy of the models (when deriving variational 
inequalities from asymptotic formulae, the lower terms were removed). Since the bifurcations are very 
sensitive to perturbations of the data of the problem, in Situation 3 qualitatively differing patterns of 
crack development may be obtained. 

The next assertion relates to the case of avalanche-like crack growth, i.e. to Situation 4. 

Proposition 4. If the matrix aA + B is positive definite and all the components of the right-hand side 
of F('r) are negative, variational inequality (3.5) has no solutions. 

Proof. It is sufficient to note that, for both criteria, variational inequality (3.5) is equivalent to the problem of 
the stationary points of the functional 

(R+)N~ H ~ - ((o.4 + B), H) + 2(F, H) 

It is obvious that, under the conditions indicated, there are no such points. 

6. E X A M P L E S  

The effects discussed in the previous section can even be traced in the simplest problem of a single 
1 4 internal crack (i.e. J -- 1 and N = 2 and P and p2 are the tips of the cut M ). If the distance d from 

the centre O of the: c rackM 1 to the external contour F is much greater than its length a = IP 1 -P21 ,  
it is possible approximately to compute the 2 × 2 matrix A, replacing ~ with the entire plane R ~ and 
using a representation by the weighting function in terms of the Kolosov-Muskhelishvili potential (see 
Section 11.3 in [17]) 

A= I [A+O(a2l]  A =  2 2 (6.1) 
4a~L Ld- )J '  - I  

An estimate of the remainder in (6.1) is obtained using general results concerning problems in regions 
with a singularly perturbed boundary (see [11, 18] and also [5, 19, 20] for elasticity theory). Note that 
the matrix A is not sign definite - its eigenvalues are equal to 1 and -3. We assume that the region 
~'~(0) = ~ ' ~ / I  1 is symmetrical about the Cartesian axes Oxl and Ox2. The symmetry of the load in relation 
to the axis of the crack OXl ensures the absence of a shear mode in the stress.state close to the tips p1 
and pa. Furthermore, for the matrixA from (6.1), the relations. 

All =A22 <0  , At2=A21 >0  (6.2) 

are retained. Therefore, in subsequent calculations, we will- eliminate the small quantity O([a/d] 2) from 
(6.1) - this will no'~ qualitatively change the pattern of crack growth but only give small perturbations 
to the threshold values of the parameters. 

Initially,10 • let the loadp ~ also be symmetrical about the Ox2 axts" so that K~('r) = K~('r). Since, for lower 
SIFs k 1 , integral re, presentations similar to (2.4) hold (see [7] and also [5, 9]), by selecting suitable forces 
p0 and p '  it is poss:ible to ensure any SIF values, in particular 

K~ °=K~ °=KI,., kl ° = k ?  °, K , " = K ? ' > 0  (6.3) 

Problem I or Problem G satisfies the conditions of Proposition 1 only if 2a~ ° < -K~I °, when the crack 
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develops symmetrically and quasistatically, and the unique solution acquires the form 

H, ('t) = H2(x) = 4o~'tKiJ" (-K] ° - 2ak]]°) -] K] ° (6.4) 

In (6.4) the factor of 8 ° (positive) coincides with the extension of the crack at each of the tips. 
When 2a~ ° /> - 8  °, there are no solutions of (3.5) (dynamic growth). In fact, we note first that 
H(-r) = 0 cannot be a solution. If there is a non-trivial solution, then inequality (3.5), in which 
Xi = Hi('r) + 1, leads to the contradiction 

- (2aK~°)- ' (Kl  ° + 2ak,m)(H, (x)+ H2(x)) t> I:K~' > 0 

In particular, 2a~ ° > - 8  0 in the case of a homogeneous stress field, and it is for this reason that 
energy balance during the quasistatic displacement of cracks is impossible (apropos of an inhomogeneous 
field, see [21]). It is obvious that, when KI '< 0, the solutions of Problems I and G are trivial, i.e. the 
crack stops. 

By Proposition 3. Irwin's and Griffith's criteria lead to identical results in the case of (6.3). We will 
now examine a loading p" such that the component p '  possesses no symmetry about the axis 
Ox2 and for small s > 0 

K, '° = K~"(I + s ) =  K,,. k, '° =kZ°(l+s).  K,"= K(" (6.5) 

For the condition 2a~ ° < -/~i ° of the unique solvability of Problem I and Problem G, we have 

F~(~)=-zK, I', ~ = 8 - ' c K ~ '  ( 8 = 8  t or 8 = 8  o) 

S 
8 / = KI,, 

1 + s  

Hl('t)='~cb -I, H2('17)=0 when "c~ T (6.6) 

"cc 8a8 zc 4aSb 
- -  , - -  w h e n  z I >  T 

HIfx) = b - 2  b 2 - 4  H2('~) = b - 2  b 2 - 4  

b = l - 2 a k j m ( K l ° )  - j > 2 ,  c = 4 a K l ' ,  T= 8b (Kll,)_l 
b + 2  

Thus, in both criteria, only the tip p1 (at which KI ° = K1c ) advances up to a certain instant of time, 
and the crack then grows in both directions. The rate of displacement of the tips are identical only 
because, according to assumption (6.5), KI°/KI ° = K2°/K 2°. In addition, the start of the apex pZ within 
the framework of the model of Griffith's criterion is later than for the model of Irwin's criterion, since 
in (6.6) 

s __b K,,.(K,,)_, Tc=(I+2)T I 
Tt = i +-----~ 2 + b 

However, an error of the order of s 2 in determining T is beyond the scope of the accuracy of the 
2 2 model used. since, when comparing Problems I and G, the quantities O('r ) and O[h('r) ] were discarded. 

An increase in the parameters s > 0 and b > 2 delays the instant of connection of the tip p2 to the 
fracture process. The functions indicated in (6.6) are continuous with respect to the parameter ~. Finally, 

, 2 2"r in Irwin s criterion the tip P begins to move until the hypothetical SIFK1 from (1.2) reaches the critical 
value Klc. The same is true for Griffith's criterion, since the number s in (6.5) is small. 

In the previous examples, an alternative was observed: problem (3.5) is either unsolvable or has a 
unique solution. As can be seen from what follows, bifurcations can arise if the elementsA12 = A21 of 
the matrix from (6.1) are negative. Using the Papkovich-Neuber concept and the maximum principle, 
it is established that the off-diagonal elements of the matrix A are positive if the family of cracks is 
positioned on the line L but remote from the external surface 8~(the conditions of Proposition 2 are 
thereby ensured). The same holds true for a family containing one or two long boundary cracks on L, 
Thus, bifurcations are revealed perhaps only because of the interaction of cracks with the remaining 
part of the boundary of the body. Numerical calculations of SIFs in similar situations can be found in 
[22] and elsewhere. 
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Bifurcation effects were investigated in detail in [1, 23], but here we will confine ourselves to the 
simplest example: we will adopt conditions (6.3) and replace the matrix (6.1) by 

A= I II ; -2 I 
4ao¢ - I 

As earlier, it can be verified that when 2a~ ° I> - 8  0 there are no solutions for problem (3.5). When 
2a~ ° < -3/di °, Proposition 1 guarantees the uniqueness of the solution 

H,('c) = H_~ ('¢)= 4a'cK," (K: ° -  2ak:°) -' K, '° (6.7) 

The same symmetrical solution (6.7) is retained when 2a~ ° < K~I °, but when 2a~ ° ~ [-3/~i °, -/~i °) a 
further two solutions arise, which are asymmetrical 

Hi(x  ) = 4azKjl" ( - K l  ° - 2akl°) -t KI °, H~_i(x) = O, i = I, 2 

According to well-known results [1, 23], the symmetrical solution (6.7) is unstable. 

7. G E N E R A L I Z A T I O N S  - G R I F F I T H ' S  C R I T E R I O N  

We will drop the assumption that the SIF K~2 ° is small. Besides the column H(1)('r) with components 
(3.1), we will introduce the co lumn/ - / (2 ) ( r )  = [H~2)(r) . . . . .  H(uZ)(r)] t with the components 

H,, ~ '-) ( x) = h,, ( x )K~  ° (7.1)  

There is no need to introduce any constraints on the components (7.1) corresponding to the shear 
mode. Now the problem of minimizing the functional AU(r) + All(r) reduces to a variational inequality 
of the form 

oct, (A(i ' t)H(i)(x),  Hm('~) - X ( t ) ) + ( B m H m ( ' O ,  H(t)(x) - X(')) >~ 
i , I  

~(F~I~(X),  H ( I ' ( ~ ) - X O ) ) + ( F t 2 ) ( Z ) ,  H(2)(x)-X O-)) (7.2) 

VX")~(R+)  N, x ( Z ~ R  u 

t,/ d where A are N × N matrices with elements A~,, from (2.3). and the components of the N columns 
F(1)0" ) and F(2)(r) and the elements of the diagonal matrix B (1) have the form 

-(I) ,,0 -I 2 (K .O)2  _ K[,O ,,, F,, (1:) = ( K j  ) {K~ , . -  2 } - ' I :K~ ' ,  F,12)( ' I : )=- ' t 'K2 

B:I~ = (2 K[,o )-t {kt, O *' K2' ,,0 vn0,r,2 t lxlv"0 )'-I } 

For the problem in question it is possible to prove an assertion similar to Proposition 1. However, 
1)'[ 2) the interpretation of the solut ion/- /((r) , /4 ( ( r )  is not as obvious as in the case of Problem G. Of course, 

in accordance with (3.1), the extensions hi(r) . . . .  , hn(r) are re-established for the first column H(1)(r). 
In addition, the values of hn(r  ) found may contradict formula (7.1), since all of the quantities occurring 
in it have already been computed. In all likelihood, the discrepancy is due to the assumption of rectilinear 
crack growth - the presence of a shear component should cause distortion of the trajectories, but the 

1) 2) question of the possibility of determining their shape from the solution/4 ( ( ' r ) , / - / ( ( r )  remains open 
(see the related papers [24-27]. However, a switch to examining curved cracks may alter the essential 
nature of the variational inequality by the addition of new unknown quantities. 

8. G E N E R A L I Z A T I O N S  - IRWIN 'S  C R I T E R I O N  

The two-term asymptotic form (2.8) was used to construct variational inequality (3.5). The formulation 
of the fracture criterion can be refined on the basis of more complete asymptotic representations of 
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the SIFs. For  example ,  under  the condit ions of  Section 3, a th ree - t e rm asymptot ic  fo rm is der ived (see 
[4] and Sections 3 and 5 in [5]) 

K~'('C) = K~ '° +'~K[" + 1:2K~ ' "  + l  h,,('r,)k~'° + o ~  A,,,,,Hm('C)+ 
/_., 

+ K, , (H;  x) + O(z 3 + h(x) ~ ) (8.1) 

(8.2) 

Here ,  the summat ion  with respect  to q is carr ied out  f rom 1 to N, ×~0 is the  coefficient of  thelsingular  
c o m p o n e n t  FffEf~5"l(~p n) in an expansion of  the fo rm (2.1) of  the solution u (the formula  for  qb • is given 
in Sect ion 1 of  [5]). Dnm are the factors  of 1"3/2(~3"1(q~ m) in the revised expansions (2.3) of  the weighting 
funct ion ~nl, and in the represen ta t ion  of  the non- l inear  ope ra to r  (8.2) the r ep lacemen t  of  
hn(r ) by Hn('r ) according to formula  (3.1) is implicit. Following, the same  p rocedure  as in Sect ion 3, 
using the asymptot ic  fo rm (8.1) we can conver t  relat ions (3.2) and (3.3) into a p rob l em with unilateral  
constraints  

( ( (xA+B)H(x) ,  H ( x ) - X ) + ( K ( H ; x ) ,  H ( x ) - X ) ~ ( F ( x ) , H ( x ) - X ) ,  ' v ' x ~ ( R + )  N (8.3) 

F('c) = Ki,. - K~ 0 - "~K~" - T2K~ '"  

containing the te rms  "r2K~ " and a-k~" f rom (1.2) and (2.2), which were  not  called for  earl ier  in (3.5). 
The  use of  complicated asymptot ic  formulae  should enable  p rob lem (8.3) to describe the development  

of  a family of  cracks over  a g rea te r  range  of  values  of  the p a r a m e n t e r  "r than  p r o b l e m  L In  addition, 
the p resence  in (8.3) o f  the coefficients ×~0, Dnrn ' and the non- l inear  ope ra to r  K = (K1 . . . . .  KN) t makes  
it difficult bo th  to p repa re  the data  and to solve the p r o b l e m  itself. There fo re ,  the s tep-by-s tep solution 
of  variational inequality (3.5) with a re-calculation of  the initial data is very likely to be a more  economical  
approach  that  nonetheless  ensures  the s ame  accuracy. 

The  revised formula t ion  of  Griffi th 's  criterion, similar to (8.3), requires  the construct ion of  successive 
terms of  asymptot ic  fo rm (2.10) of  the potent ia l  energy of  deformat ion.  They  are extremely cumbersome  
and are not  wri t ten out  here.  The  var ia t ional  inequali t ies that  arise are invest igated by the previous 
scheme.  

I wish to thank  N. E Morozov  and I. I. Arga tov  for  discussing this paper .  
This research was suppor ted  financially by the Russian Foundat ion  for  Basic Research  (98-01-00974). 
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